The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283850 Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 734", based on the 5-celled von Neumann neighborhood. 4
1, 11, 111, 1111, 10111, 111111, 1110111, 11111111, 101110111, 1111111111, 11011110111, 110111111111, 1111101110111, 11111111111111, 111011011110111, 1111111111111111, 11111111101110111, 111111111111111111, 1111111011011110111, 11111111111111111111 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
Conjectures from Chai Wah Wu, May 06 2024: (Start)
a(n) = 10*a(n-1) + a(n-4) - 10*a(n-5) for n > 25.
G.f.: (-10000000000000*x^25 + 1000000000000*x^24 - 1000000000000*x^23 + 100000000000*x^22 + 10000000000000*x^21 - 1000000000000*x^20 - 10000000000*x^16 + 1001000000000*x^15 - 100000000000*x^14 + 10000000000*x^12 - 100000000*x^10 + 100000000*x^9 - 10000000*x^8 + 10000*x^7 - 1000*x^6 + 10000*x^5 - 1000*x^4 + x^3 + x^2 + x + 1)/(10*x^5 - x^4 - 10*x + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 734; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
Sequence in context: A283257 A284088 A284420 * A283605 A083440 A138144
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 17 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 05:35 EDT 2024. Contains 373366 sequences. (Running on oeis4.)