login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287167
Smallest number with exactly n representations as a sum of 8 nonzero squares or 0 if no such number exists.
2
8, 23, 35, 32, 46, 58, 72, 56, 62, 70, 71, 79, 80, 83, 88, 89, 91, 86, 103, 94, 109, 104, 107, 112, 113, 110, 122, 119, 126, 121, 118, 144, 0, 128, 131, 136, 137, 153, 143, 139, 149, 134, 0, 0, 142, 152, 164, 154
OFFSET
1,1
FORMULA
A025432(a(n)) = n for a(n) > 0.
EXAMPLE
a(1) = 8 because 8 is the smallest number with exactly 1 representation as a sum of 8 nonzero squares: 8 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2;
a(2) = 23 because 23 is the smallest number with exactly 2 representations as a sum of 8 nonzero squares: 23 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2, etc.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 20 2017
STATUS
approved