login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A123045
Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).
9
0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
OFFSET
0,2
LINKS
Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
T. Pisanski, D. Schattschneider and B. Servatius, Applying Burnside's lemma to a one-dimensional Escher problem, Math. Mag., 79 (2006), 167-180. See F(n).
FORMULA
See Maple program.
MAPLE
with(numtheory):
V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611
H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's
A123045:=n-> `if`(n=0, 0, (V(n)+H(n))/(2*n));
MATHEMATICA
V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1];
H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0];
a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)];
a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)
CROSSREFS
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.
Sequence in context: A074442 A162589 A225957 * A280171 A327879 A094261
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 11 2006
STATUS
approved