The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110199 a(n) = Sum_{k=0..floor(n/2)} Catalan(k). 1
 1, 1, 2, 2, 4, 4, 9, 9, 23, 23, 65, 65, 197, 197, 626, 626, 2056, 2056, 6918, 6918, 23714, 23714, 82500, 82500, 290512, 290512, 1033412, 1033412, 3707852, 3707852, 13402697, 13402697, 48760367, 48760367, 178405157, 178405157, 656043857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Hankel transform is A166446(n+2). - Paul Barry, Jun 23 2010 LINKS Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019). FORMULA G.f.: (1-sqrt(1-4x^2))/((1-x)2x^2); a(n) = Sum_{k=0..floor(n/2)} binomial(2k, k)/(k+1). Conjecture: -(n+2)*a(n) + (n+2)*a(n-1) + 4*(n-1)*a(n-2) + 4*(1-n)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012 G.f.: 1/x^2 - G(0)/(1-x)/x^2, where G(k)= 1 - x/(1 - x/(1 + x/(1 + x/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013 MAPLE a:= n-> add(binomial(2*j, j)/(j+1), j=0..n/2): seq(a(n), n=0..36); # Zerinvary Lajos, Apr 30 2007 CROSSREFS Cf. A000108, A014137. Sequence in context: A074818 A322112 A324409 * A222736 A053656 A035054 Adjacent sequences:  A110196 A110197 A110198 * A110200 A110201 A110202 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 21:12 EDT 2021. Contains 347698 sequences. (Running on oeis4.)