login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053655
a(n) = (10^n - 1)*(10^(2*n-1) - 1)/81.
1
1, 1221, 1233321, 1234444321, 1234555554321, 1234566666654321, 1234567777777654321, 1234567888888887654321, 1234567899999999987654321, 1234567901111111110987654321, 1234567901222222222220987654321, 1234567901233333333333320987654321
OFFSET
1,2
REFERENCES
W. Lietzmann, Sonderlinge im Reich der Zahlen, Ferd. Duemmlers Verlag Bonn, 1948, p. 30.
LINKS
FORMULA
G.f.: x*(1 + 110*x - 11100*x^2)/((1-x)*(1-10*x)*(1-100*x)*(1-1000*x)). - Colin Barker, Mar 19 2015
EXAMPLE
a(2) = 11*111 = 1221;
a(3) = 111*11111 = 1233321;
a(4) = 1111*1111111 = 1234444321.
MATHEMATICA
Table[(10^n -1)*(10^(2*n-1) -1)/81, {n, 1, 20}] (* G. C. Greubel, May 18 2019 *)
LinearRecurrence[{1111, -112110, 1111000, -1000000}, {1, 1221, 1233321, 1234444321}, 20] (* Harvey P. Dale, Mar 18 2023 *)
PROG
(PARI) a(n)=(10^n-1)*(10^(2*n-1)-1)/81 \\ Charles R Greathouse IV, Jun 10 2013
(PARI) Vec(x*(1+110*x-11100*x^2)/((1-x)*(1-10*x)*(1-100*x)*(1-1000*x)) + O(x^20)) \\ Colin Barker, Mar 19 2015
(Magma) [(10^n -1)*(10^(2*n-1) -1)/81: n in [1..20]]; // G. C. Greubel, May 18 2019
(Sage) [(10^n -1)*(10^(2*n-1) -1)/81 for n in (1..20)] # G. C. Greubel, May 18 2019
(GAP) List([1..20], n-> (10^n -1)*(10^(2*n-1) -1)/81 ) # G. C. Greubel, May 18 2019
CROSSREFS
Sequence in context: A015279 A179140 A091790 * A068262 A328991 A223118
KEYWORD
easy,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 17 2000
STATUS
approved