



1, 1, 2, 1, 2, 2, 2, 1, 4, 4, 4, 2, 2, 6, 6, 1, 2, 4, 8, 4, 4, 6, 12, 2, 8, 6, 10, 6, 22, 10, 8, 1, 4, 4, 6, 2, 8, 6, 8, 4, 6, 12, 14, 2, 16, 10, 16, 2, 8, 16, 4, 6, 14, 8, 24, 6, 30, 18, 20, 6, 26, 18, 26, 1, 6, 8, 8, 4, 12, 12, 6, 8, 12, 14, 18, 4, 20, 20, 20, 4, 16, 16, 8, 12, 28, 16, 10, 12, 22, 26, 14, 12, 34, 20, 22, 2, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

This is most likely equal to A276150(A086141(n)), apart from the different offset used in A086141.
The same comments about the parity of terms as in A324383 and A324387 apply also here, except here 1's occur at positions given by 2^k  1.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..16383
Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65537
Index entries for sequences related to binary expansion of n
Index entries for sequences related to primorial base
Index entries for sequences related to primorial numbers


FORMULA

a(n) = A324383(A006068(n)) = A276150(A322827(A006068(n))).
a(A000225(n)) = 1 for all n.


PROG

(PARI)
A006068(n)= { my(s=1, ns); while(1, ns = n >> s; if(0==ns, break()); n = bitxor(n, ns); s <<= 1; ); return (n); } \\ From A006068
A276150(n) = { my(s=0, m); forprime(p=2, , if(!n, return(s)); m = n%p; s += m; n = (nm)/p); };
A322827(n) = if(!n, 1, my(bits = Vecrev(binary(n)), rl=1, o = List([])); for(i=2, #bits, if(bits[i]==bits[i1], rl++, listput(o, rl))); listput(o, rl); my(es=Vecrev(Vec(o)), m=1); for(i=1, #es, m *= prime(i)^es[i]); (m));
A324383(n) = A276150(A322827(n));
A324386(n) = A324383(A006068(n));


CROSSREFS

Cf. A002110, A006068, A025487, A086141, A276150, A322827, A324342, A324382.
Cf. also A324383, A324387 (permutations of this sequence) and A324380, A324390.
Sequence in context: A054992 A096495 A276062 * A233390 A324114 A011776
Adjacent sequences: A324383 A324384 A324385 * A324387 A324388 A324389


KEYWORD

nonn


AUTHOR

Antti Karttunen, Feb 27 2019


STATUS

approved



