login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324390
Lexicographically earliest positive sequence such that a(i) = a(j) => A278219(i) = A278219(j) and A324386(i) = A324386(j), for all i, j >= 0.
5
1, 2, 3, 2, 3, 4, 5, 2, 6, 7, 8, 4, 5, 9, 10, 2, 3, 7, 11, 7, 8, 12, 13, 4, 14, 15, 16, 9, 17, 18, 14, 2, 6, 7, 19, 20, 11, 21, 22, 7, 23, 24, 25, 26, 27, 28, 27, 4, 14, 29, 30, 15, 31, 32, 33, 9, 34, 35, 36, 9, 37, 38, 37, 2, 39, 40, 11, 7, 41, 42, 43, 40, 41, 44, 45, 46, 47, 48, 47, 7, 49, 50, 51, 24, 52, 53, 54, 55, 56, 57, 58, 42, 59, 60, 56, 4, 61, 62, 63
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A278219(n), A324386(n)].
FORMULA
a(A000225(n)) = 2 for all n >= 1.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A278222(n) = A046523(A005940(1+n));
A003188(n) = bitxor(n, n>>1);
Aux324390(n) = [A278219(n), A324386(n)]; \\ See code for A324386 in that entry.
v324390 = rgs_transform(vector(1+up_to, n, Aux324390(n-1)));
A324390(n) = v324390[1+n];
CROSSREFS
Cf. also A286619, A324343, A324344, A324380 (compare the scatter-plots).
Sequence in context: A286619 A286534 A324532 * A260112 A361838 A213183
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 27 2019
STATUS
approved