login
A278219
Filter-sequence related to base-2 run-length encoding: a(n) = A046523(A243353(n)).
17
1, 2, 4, 2, 4, 8, 6, 2, 4, 12, 16, 8, 6, 12, 6, 2, 4, 12, 36, 12, 16, 32, 24, 8, 6, 30, 24, 12, 6, 12, 6, 2, 4, 12, 36, 12, 36, 72, 60, 12, 16, 48, 64, 32, 24, 72, 24, 8, 6, 30, 60, 30, 24, 48, 60, 12, 6, 30, 24, 12, 6, 12, 6, 2, 4, 12, 36, 12, 36, 72, 60, 12, 36, 180, 144, 72, 60, 180, 60, 12, 16, 48, 144, 48, 64, 128, 96, 32, 24, 120, 216, 72, 24, 72
OFFSET
0,2
LINKS
FORMULA
a(n) = A046523(A243353(n)).
a(n) = A278222(A003188(n)).
a(n) = A278220(1+A075157(n)).
MATHEMATICA
f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; g[n_] := If[n == 1, 1, Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]];
Table[g@ f[BitXor[n, Floor[n/2]], 1, 1], {n, 0, 93}] (* _Michael De Vlieger_, May 09 2017 *)
PROG
(Scheme) (define (A278219 n) (A046523 (A243353 n)))
(Python)
from sympy import prime, factorint
import math
def A(n): return n - 2**int(math.floor(math.log(n, 2)))
def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
def a005940(n): return b(n - 1)
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a003188(n): return n^int(n/2)
def a243353(n): return a005940(1 + a003188(n))
def a(n): return a046523(a243353(n)) # _Indranil Ghosh_, May 07 2017
CROSSREFS
Other base-2 related filter sequences: A278217, A278222.
Sequences that (seem to) partition N into same or coarser equivalence classes are at least these: A005811, A136004, A033264, A037800, A069010, A087116, A090079 and many others like A105500, A106826, A166242, A246960, A277561, A037834, A225081 although these have not been fully checked yet.
Sequence in context: A286580 A286598 A286557 * A155682 A191370 A298242
KEYWORD
nonn
AUTHOR
_Antti Karttunen_, Nov 16 2016
STATUS
approved