login
A277561
a(n) = Sum_{k=0..n} ({binomial(n+2k,2k)*binomial(n,k)} mod 2).
9
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 4, 8, 8, 8, 8, 16, 8
OFFSET
0,2
COMMENTS
Equals the run length transform of A040000: 1,2,2,2,2,2,...
FORMULA
a(n) = 2^A069010(n). a(2n) = a(n), a(4n+1) = 2a(n), a(4n+3) = a(2n+1). - Chai Wah Wu, Nov 04 2016
a(n) = A034444(A005940(1+n)). - Antti Karttunen, May 29 2017
MATHEMATICA
Table[Sum[Mod[Binomial[n + 2 k, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 86}] (* Michael De Vlieger, Oct 21 2016 *)
PROG
(Python)
def A277561(n):
return sum(int(not (~(n+2*k) & 2*k) | (~n & k)) for k in range(n+1))
(PARI) a(n) = sum(k=0, n, binomial(n+2*k, 2*k)*binomial(n, k) % 2); \\ Michel Marcus, Oct 21 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Oct 19 2016
STATUS
approved