login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277561
a(n) = Sum_{k=0..n} ({binomial(n+2k,2k)*binomial(n,k)} mod 2).
9
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 4, 8, 8, 8, 8, 16, 8
OFFSET
0,2
COMMENTS
Equals the run length transform of A040000: 1,2,2,2,2,2,...
FORMULA
a(n) = 2^A069010(n). a(2n) = a(n), a(4n+1) = 2a(n), a(4n+3) = a(2n+1). - Chai Wah Wu, Nov 04 2016
a(n) = A034444(A005940(1+n)). - Antti Karttunen, May 29 2017
MATHEMATICA
Table[Sum[Mod[Binomial[n + 2 k, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 86}] (* Michael De Vlieger, Oct 21 2016 *)
PROG
(Python)
def A277561(n):
return sum(int(not (~(n+2*k) & 2*k) | (~n & k)) for k in range(n+1))
(PARI) a(n) = sum(k=0, n, binomial(n+2*k, 2*k)*binomial(n, k) % 2); \\ Michel Marcus, Oct 21 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Oct 19 2016
STATUS
approved