login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277558
A variation on Recamán's sequence (A005132): to get a(n), we first try to subtract n from a(n-1): a(n) = a(n-1)-n if positive and not already in the sequence; if not then a(n) = a(n-1)+n-i, where i >= 0 is the smallest number such that a(n-1)+n-i has not already appeared.
2
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 40, 15, 39, 66, 38, 67, 37, 68, 36, 69, 35, 70, 34, 71, 33, 72, 32, 73, 31, 74, 30, 75, 29, 76, 28, 77, 27, 78, 26, 79, 133, 188, 132, 189, 131, 190, 130, 191, 129, 192
OFFSET
0,3
COMMENTS
Is it ever impossible to extend the sequence -- meaning there is no number less than a(n-1)+n which has not appeared?
After 10^11 terms, the smallest number which has not appeared is 609790506.
LINKS
EXAMPLE
a(23) = 18. To get a(24) we try 18-24, but that is negative; so we try 18+24 = 42, but 42 has already appeared; so we try 18+24-1, but 41 has also already appeared; so we try 18+24-2. 40 is positive and has not yet appeared, and so a(24) = 40.
CROSSREFS
Cf. A005132, A064387 (chooses a(n-1)+n+i instead of a(n-1)+n-i).
Sequence in context: A074170 A076543 A274648 * A350578 A335299 A005132
KEYWORD
nonn
AUTHOR
Benjamin Chaffin, Oct 19 2016
STATUS
approved