login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191370
a(n) = 2*(1+(-1)^n)/3 + 2*A010892(n-1).
1
1, 2, 4, 2, 4, 8, 22, 44, 88, 170, 340, 680, 1366, 2732, 5464, 10922, 21844, 43688, 87382, 174764, 349528, 699050, 1398100, 2796200, 5592406, 11184812, 22369624, 44739242
OFFSET
0,2
COMMENTS
a(n) and successive differences define an infinite array:
1, 2, 4, 2, 4, 8, ...
1, 2, -2, 2, 4, 14, ...
1, -4, 4, 2, 10, 8, ...
-5, 8, -2, 8, -2, 14, ...
13, -10, 10, -10, 16, 2, ...
-23, 20, -20, 26, -14, 32, ...
...
Its main diagonal consists of the powers 2^n. The first upper diagonal is a signed sequence of 2's. The second upper diagonal contains essentially A135440.
FORMULA
a(n+3) = 3*2^n - a(n), n >= 0.
a(n+1) - 2*a(n) = -6*A131531(n+1).
a(3*n) = A007613(n), a(1+3*n) = 2*A007613(n), a(2+3*n) = 4*A007613(n).
a(n+6) = a(n) + 21*2^n.
a(n) = ((2^n + 2*(-1)^n)*2^n - 2*i*sqrt(3)*((1+i*sqrt(3))^n - (1-i*sqrt(3))^n))/(3*2^n), where i=sqrt(-1); a(n+1) = 2*(A001045(n) + A010892(n)). - Bruno Berselli, Jun 06 2011
G.f.: ( -1+5*x^3 ) / ( (2*x-1)*(1+x)*(x^2-x+1) ). - R. J. Mathar, Jun 06 2011
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - Paul Curtz, Jun 07 2011
a(n) = A113405(n+3) - 5*A113405(n). - R. J. Mathar, Jun 24 2011
MAPLE
A010892 := proc(n) op( 1+(n mod 6), [1, 1, 0, -1, -1, 0]) ; end proc:
A191370 := proc(n) 2^n/3+2*(-1)^n/3+2*A010892(n-1) ; end proc:
seq(A191370(n), n=0..30) ; # R. J. Mathar, Jun 06 2011
MATHEMATICA
LinearRecurrence[{2, 0, -1, 2}, {1, 2, 4, 2}, 30] (* Harvey P. Dale, Sep 06 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 01 2011
STATUS
approved