login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191368
Expansion of (x*exp(x)/(exp(x)-1))^2 = sum(n>=0, a(n)/(n!*(n+1)!)*x^n).
0
1, 2, 5, 12, 12, -120, -600, 6720, 84672, -1088640, -27216000, 399168000, 17337576960, -286858091520, -19833061248000, 366148823040000, 37838865512448000, -771912856453939200, -113678565831806976000, 2541050295063920640000, 513635665355584192512000
OFFSET
0,2
COMMENTS
(x*exp(x)/(exp(x)-1))^m = 1+sum(n>0, ((-1)^n*sum(k=1..n, (stirling1(m+k,m) *stirling2(n,k))/binomial(m+k,k)))*x^n/n!).
FORMULA
a(n) = 2*(-1)^n*(n+1)!*sum(k=1..n, (stirling1(k+2,2) *stirling2(n,k))/((k+1)*(k+2))), a(0)=1.
PROG
(Maxima) a(n):=if(n=0) then 1 else 2*(-1)^n*(n+1)!* sum((stirling1(k+2, 2) *stirling2(n, k))/((k+1)*(k+2)), k, 1, n);
CROSSREFS
Sequence in context: A125199 A103832 A348891 * A085227 A324601 A305310
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 07 2011
STATUS
approved