login
A103832
For even n, a(n)=2n+1, for odd n, a(n)=n(n+1)
2
1, 2, 5, 12, 9, 30, 13, 56, 17, 90, 21, 132, 25, 182, 29, 240, 33, 306, 37, 380, 41, 462, 45, 552, 49, 650, 53, 756, 57, 870, 61, 992, 65, 1122, 69, 1260, 73, 1406, 77, 1560, 81, 1722, 85, 1892, 89, 2070, 93, 2256, 97, 2450, 101, 2652, 105, 2862, 109, 3080, 113
OFFSET
0,2
COMMENTS
First the sum then the product of two successive integers.
FORMULA
G.f.: (1+3x^2)(1+2x-x^2)/((1-x)^3*(1+x)^3). [R. J. Mathar, Aug 30 2008]
a(n) = (n^2+3*n+1-(n^2-n-1)*(-1)^n)/2. - Luce ETIENNE, Apr 13 2016
E.g.f.: (2*x+1)*cosh(x) + (x^2 + 2*x)*sinh(x). - Ilya Gutkovskiy, Apr 13 2016
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). - G. C. Greubel, Apr 13 2016
EXAMPLE
a(4)=4+5=9, a(5)=5*6=30.
MAPLE
seq(2*n+1+(n mod 2)*(n^2-n-1), n=0..100); # Robert Israel, Apr 14 2016
MATHEMATICA
Flatten[Table[{i + i + 1, (i + 1)(i + 2)}, {i, 0, 98, 2}]]
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 2, 5, 12, 9, 30}, 60] (* Harvey P. Dale, Oct 07 2016 *)
PROG
(Python)
for n in range(0, 10**3):
print((int)((n**2+3*n+1-(n**2-n-1)*(-1)**n)/2))
# Soumil Mandal, Apr 14 2016
CROSSREFS
Cf. A103831.
Sequence in context: A110020 A070266 A125199 * A348891 A191368 A085227
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 17 2005, Feb 18 2005
EXTENSIONS
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar
Corrected typo in the definition - R. J. Mathar, Sep 07 2010
STATUS
approved