Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 28 2019 18:54:14
%S 1,1,2,1,2,2,2,1,4,4,4,2,2,6,6,1,2,4,8,4,4,6,12,2,8,6,10,6,22,10,8,1,
%T 4,4,6,2,8,6,8,4,6,12,14,2,16,10,16,2,8,16,4,6,14,8,24,6,30,18,20,6,
%U 26,18,26,1,6,8,8,4,12,12,6,8,12,14,18,4,20,20,20,4,16,16,8,12,28,16,10,12,22,26,14,12,34,20,22,2,12
%N a(n) = A324383(A006068(n)).
%C This is most likely equal to A276150(A086141(n)), apart from the different offset used in A086141.
%C The same comments about the parity of terms as in A324383 and A324387 apply also here, except here 1's occur at positions given by 2^k - 1.
%H Antti Karttunen, <a href="/A324386/b324386.txt">Table of n, a(n) for n = 0..16383</a>
%H Antti Karttunen, <a href="/A324386/a324386.txt">Data supplement: n, a(n) computed for n = 0..65537</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F a(n) = A324383(A006068(n)) = A276150(A322827(A006068(n))).
%F a(A000225(n)) = 1 for all n.
%o (PARI)
%o A006068(n)= { my(s=1, ns); while(1, ns = n >> s; if(0==ns, break()); n = bitxor(n, ns); s <<= 1; ); return (n); } \\ From A006068
%o A276150(n) = { my(s=0,m); forprime(p=2, , if(!n, return(s)); m = n%p; s += m; n = (n-m)/p); };
%o A322827(n) = if(!n,1,my(bits = Vecrev(binary(n)), rl=1, o = List([])); for(i=2,#bits,if(bits[i]==bits[i-1], rl++, listput(o,rl))); listput(o,rl); my(es=Vecrev(Vec(o)), m=1); for(i=1,#es,m *= prime(i)^es[i]); (m));
%o A324383(n) = A276150(A322827(n));
%o A324386(n) = A324383(A006068(n));
%Y Cf. A002110, A006068, A025487, A086141, A276150, A322827, A324342, A324382.
%Y Cf. also A324383, A324387 (permutations of this sequence) and A324380, A324390.
%K nonn
%O 0,3
%A _Antti Karttunen_, Feb 27 2019