

A233390


a(n) = {0 < k < n: 2^k  1 + q(nk) is prime}, where q(.) is the strict partition function (A000009).


8



0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 4, 4, 2, 3, 2, 3, 3, 7, 4, 4, 5, 3, 4, 5, 5, 5, 6, 7, 6, 5, 4, 4, 9, 3, 6, 6, 5, 4, 7, 1, 4, 5, 6, 9, 6, 8, 6, 8, 4, 5, 8, 7, 4, 3, 4, 7, 6, 6, 3, 6, 5, 6, 4, 6, 8, 7, 8, 4, 5, 3, 6, 7, 7, 3, 10, 7, 5, 6, 10, 4, 8, 4, 6, 7, 6, 8, 10, 4, 6, 8, 9, 5, 6, 5, 7, 13, 5, 5, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 150000. For n = 124669, the least positive integer k with 2^k  1 + q(nk) prime is 13413.


LINKS



EXAMPLE

a(6) = 1 since 2^2  1 + q(4) = 3 + 2 = 5 is prime.
a(10) = 1 since 2^4  1 + q(6) = 15 + 4 = 19 is prime.
a(41) = 1 since 2^{16}  1 + q(25) = 65535 + 142 = 65677 is prime.
a(127) = 1 since 2^{21}  1 + q(106) = 2097151 + 728260 = 2825411 is prime.
a(153) = 1 since 2^{70}  1 + q(83) = 1180591620717411303423 + 101698 = 1180591620717411405121 is prime.
a(164) = 1 since 2^{26}  1 + q(138) = 67108863 + 8334326 = 75443189 is prime.


MATHEMATICA

a[n_]:=Sum[If[PrimeQ[2^k1+PartitionsQ[nk]], 1, 0], {k, 1, n1}]
Table[a[n], {n, 1, 100}]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



