login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233389
Naturally embedded ternary trees having no internal node of label greater than 1.
3
1, 1, 3, 11, 46, 209, 1006, 5053, 26227, 139726, 760398, 4211959, 23681987, 134869448, 776657383, 4516117107, 26486641078, 156532100029, 931426814462, 5576590927886, 33574649282538, 203169756237944, 1235156720288767, 7541099028832261, 46222213821431646
OFFSET
0,3
LINKS
Markus Kuba, A note on naturally embedded ternary trees, Electronic Journal of Combinatorics, Volume 18 (1), paper P142, 2011.
Markus Kuba, A note on naturally embedded ternary trees, arXiv:0902.2646 [math.CO], 2009.
FORMULA
G.f.: (T(z) - 2)*T^3(z)/(T^2(z) - 3*T(z) + 1), where T(z) = 1 + z*T^3(z) is the generating function of ternary trees - see A001764.
From Peter Bala, Feb 06 2022: (Start)
a(n) = (2/(n+1))*binomial(3*n,n) + Sum_{k=0..n} (-1)^(k+1)*Fibonacci(k+1)* binomial(3*n,n-k)*(n*(11*k+5)-2*k(k+1))/(n*(2*n+k+1)) for n >= 1. See Kuba, Corollary 1, p. 6.
O.g.f.: A(x) = (1/x)*(B(x) - 2)/(B(x) - 1), where B(x) = Sum_{n >= 0} 2*(3*n)!/((2*n+1)!*((n+1)!))*x^n is the o.g.f. of A000139. (End)
MAPLE
a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),
((1349*n^2-2738*n+953)*n*a(n-1) -(5567*n^3-20114*n^2
+22439*n-7320)*a(n-2)-(3*(3*n-4))*(19*n-11)*(3*n-5)
*a(n-3))/((2*(2*n-1))*(n+1)*(19*n-30)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 03 2017
MATHEMATICA
a[n_] := a[n] = If[n < 3, 1 + n*(n - 1), ((1349*n^2 - 2738*n + 953)*n*a[n - 1] - (5567*n^3 - 20114*n^2 + 22439*n - 7320)*a[n - 2] - (3*(3*n - 4)) * (19*n - 11)*(3*n - 5)*a[n - 3])/((2*(2*n - 1))*(n + 1)*(19*n - 30))];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
PROG
(PARI) N=66; x='x+O('x^N); T=serreverse(x-x^3)/x; v=Vec(((T-2)*T^3/(T^2-3*T+1))); vector(#v\2, n, v[2*n-1]) \\ Joerg Arndt, May 26 2016
CROSSREFS
Sequence in context: A193074 A287891 A371428 * A281548 A086521 A225293
KEYWORD
nonn,easy
AUTHOR
Markus Kuba, Dec 08 2013
EXTENSIONS
More terms from F. Chapoton, May 26 2016
STATUS
approved