OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(3*n-3*k+3,n-2*k).
MATHEMATICA
Table[1/(n+1) Sum[(-1)^k Binomial[n+1, k]Binomial[3n-3k+3, n-2k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Sep 25 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3-x^2))/x)
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(3*n-3*k+3, n-2*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 23 2024
STATUS
approved