login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371428
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 - x^2) ).
1
1, 3, 11, 46, 209, 1003, 5002, 25665, 134605, 718371, 3888633, 21298962, 117823660, 657344600, 3694378463, 20896495211, 118865999117, 679545095167, 3902327585407, 22499738052954, 130200110475407, 755927955655813, 4402088019958400, 25706104810367515
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(3*n-3*k+3,n-2*k).
MATHEMATICA
Table[1/(n+1) Sum[(-1)^k Binomial[n+1, k]Binomial[3n-3k+3, n-2k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Sep 25 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3-x^2))/x)
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(3*n-3*k+3, n-2*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 23 2024
STATUS
approved