login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371427
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 - x^4) ).
1
1, 2, 5, 14, 41, 122, 363, 1066, 3046, 8300, 20791, 43738, 51297, -174406, -1825027, -10480330, -50143510, -218385772, -895007802, -3504952380, -13214355159, -48116028934, -169216483595, -573113441834, -1856620607526, -5675964306988, -15927363432481
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} (-1)^k * binomial(n+1,k) * binomial(2*n-2*k+2,n-4*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2-x^4))/x)
(PARI) a(n) = sum(k=0, n\4, (-1)^k*binomial(n+1, k)*binomial(2*n-2*k+2, n-4*k))/(n+1);
CROSSREFS
Cf. A369158.
Sequence in context: A116845 A307466 A116849 * A123183 A007051 A124302
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 23 2024
STATUS
approved