OFFSET
0,1
COMMENTS
10^k+1 can only be prime if k is a power of 2. So far the only known primes of this form are a(0) = 11 and a(1) = 101. [Edited by M. F. Hasler, Aug 03 2019]
a(n) >= 2^(n+1)+1; we have a(n) = 2^(n+1)+1 for n=3, n=7, and n=15.
a(14) > 10^16. - Max Alekseyev, Jun 28 2013
From the Keller link a(15)-a(20) = 65537, 8257537, 175636481, 639631361, 70254593, 167772161. - Ray Chandler, Dec 27 2013
LINKS
FactorDB, Factorizations of 10^(2^n)+1
Makoto Kamada, Factorizations of 100...001
FORMULA
a(n) = A038371(2^n). - M. F. Hasler, Jul 30 2019
EXAMPLE
For n=2, a(2)=73 since 10^(2^2) + 1 = 10001 = 73 * 137.
MATHEMATICA
Table[With[{k = 2^n}, FactorInteger[10^k + 1]][[1, 1]], {n, 0, 13, 1}] (* Vincenzo Librandi, Jul 23 2013 *)
PROG
(PARI) a(n) = factor(10^(2^n)+1)[1, 1] \\ Michel Marcus, May 30 2013
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Sergio Pimentel, Jan 22 2012
STATUS
approved