login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102050
a(n) = 1 if 10^(2^n)+1 is prime, otherwise smallest prime factor of 10^(2^n)+1.
2
1, 1, 73, 17, 353, 19841, 1265011073, 257, 10753, 1514497, 1856104284667693057, 106907803649, 458924033, 3635898263938497962802538435084289
OFFSET
0,3
COMMENTS
The smallest known prime factors of 10^(2^15)+1 to 10^(2^18)+1 are 65537, 8257537, 175636481, 639631361. - Jeppe Stig Nielsen, Nov 04 2010
Above values for a(15)-a(18) are confirmed. a(19) = 70254593, a(20) = 167772161. - Chai Wah Wu, Oct 16 2019
a(14) <= 1702047085242613845984907230501142529. - Max Alekseyev, Feb 26 2023
FORMULA
If 10^(2^n)+1 is composite, a(n) = A185121(n).
EXAMPLE
10^(2^4)+1 = 10000000000000001 = 353*449*641*1409*69857, hence a(4) = 353.
MATHEMATICA
spf[n_]:=Module[{c=10^2^n+1}, If[PrimeQ[c], 1, FactorInteger[c][[1, 1]]]]; Array[spf, 15, 0] (* Harvey P. Dale, Apr 09 2019 *)
PROG
(PARI) for(k=0, 8, fac=factor(10^(2^k)+1); print1(if(matsize(fac)[1]==1, 1, fac[1, 1]), ", "))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
EXTENSIONS
a(13) from the Keller link, added by Jeppe Stig Nielsen, Nov 04 2010
STATUS
approved