login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185114
Number of connected 2-regular simple graphs on n vertices with girth at least 4.
19
1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0
COMMENTS
Decimal expansion of 9001/90000. - Elmo R. Oliveira, May 05 2024
FORMULA
a(0)=1; for 0 < n < 4 a(n)=0; for n >= 4, a(n)=1.
Inverse Euler transformation of A008484.
a(n) = A130543(n) + A000007(n). - Bruno Berselli, Jan 31 2011
G.f.: (x^4-x+1)/(1-x). - Elmo R. Oliveira, May 05 2024
EXAMPLE
The null graph is vacuously 2-regular and, being acyclic, has infinite girth.
There are no 2-regular simple graphs with 1 or 2 vertices.
The n-cycle has girth n.
MATHEMATICA
a[n_] := Switch[n, 0, 1, 1|2|3, 0, _, 1];
a /@ Range[0, 101] (* Jean-François Alcover, Dec 05 2019 *)
CROSSREFS
2-regular simple graphs with girth at least 4: this sequence (connected), A185224 (disconnected), A008484 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: this sequence (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Connected 2-regular simple graphs with girth at least g: A179184 (g=3), this sequence (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9).
Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).
Sequence in context: A138711 A285617 A246500 * A154281 A154282 A359552
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Jan 27 2011
STATUS
approved