Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jun 18 2024 11:55:31
%S 1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Number of connected 2-regular simple graphs on n vertices with girth at least 4.
%C Decimal expansion of 9001/90000. - _Elmo R. Oliveira_, May 05 2024
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_4">Connected regular graphs with girth at least 4</a>
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F a(0)=1; for 0 < n < 4 a(n)=0; for n >= 4, a(n)=1.
%F Inverse Euler transformation of A008484.
%F a(n) = A130543(n) + A000007(n). - _Bruno Berselli_, Jan 31 2011
%F G.f.: (x^4-x+1)/(1-x). - _Elmo R. Oliveira_, May 05 2024
%e The null graph is vacuously 2-regular and, being acyclic, has infinite girth.
%e There are no 2-regular simple graphs with 1 or 2 vertices.
%e The n-cycle has girth n.
%t a[n_] := Switch[n, 0, 1, 1|2|3, 0, _, 1];
%t a /@ Range[0, 101] (* _Jean-François Alcover_, Dec 05 2019 *)
%Y 2-regular simple graphs with girth at least 4: this sequence (connected), A185224 (disconnected), A008484 (not necessarily connected).
%Y Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: this sequence (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
%Y Connected 2-regular simple graphs with girth at least g: A179184 (g=3), this sequence (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9).
%Y Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).
%K nonn,easy
%O 0
%A _Jason Kimberley_, Jan 27 2011