login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240465
Inverse of 76th cyclotomic polynomial.
26
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0
COMMENTS
Periodic with period length 76. - Ray Chandler, Apr 03 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1).
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[76, x], {x, 0, 200}], x]
PROG
(Magma) t:=76; u:=3; m:=u*t+2; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t)));
(PARI) Vec(1/polcyclo(76)+O(x^99)) \\ Charles R Greathouse IV, May 10 2016
CROSSREFS
Cf. similar sequences listed in A240328 and A014086 (77), A014087 (78), A014093 (84), A014094 (85), A014096 (87), A014099 (90), A014100 (91), A014102 (93), A014104 (95), A014108 (99), A014111 (102), A014114 (105), A014119 (110), A014123 (114), A014124 (115), A014128 (119), A014129 (120), A014135 (126), A014139 (130), A014141 (132), A014142 (133), A014147 (138), A014149 (140), A014152 (143), A014154 (145), A014159 (150).
Sequence in context: A204445 A179184 A154272 * A240353 A014061 A014053
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Apr 06 2014
STATUS
approved