login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240470
Records of the maximum number of distinct rational solutions to x^2 - Dy^2 = t, 0 < D <= k, 0 < t <= k.
1
1, 1, 2, 3, 4, 6, 9, 12, 14, 16, 19, 24, 25, 26
OFFSET
1,3
COMMENTS
Values of k are in A240469.
EXAMPLE
All Diophantine equations x^2 - Dy^2 = t, 0 < D <= 16, 0 < t <= 16, D squarefree, have fewer than 4 distinct solutions; the first with 4 solutions is x^2 - 17y^2 = 16 with the solutions (x,y) = (9/2,1/2), (21,5), (4,0), (13,3), so 4 is in sequence.
PROG
(PARI) { r(l, k)=if(!issquarefree(l)||!polisirreducible(z^2-l), return(0)); v=bnfisintnorm(bnfinit(z^2-l), k); if(!#v, return(0)); s=0; for(k=1, #v, p=v[k]; a=polcoeff(p, 0); b=polcoeff(p, 1); f=1; for(l=k+1, #v, p=v[l]; aa=polcoeff(p, 0); bb=polcoeff(p, 1); if(abs(a)==abs(aa)&&abs(b)==abs(bb), f=0; break)); s=s+f); s
m=0; n=0; while(1, n=n+1; res=0; for(l=1, n, rr=r(l, n); if(rr>res, res=rr)); for(k=1, n-1, rr=r(n, k); if(rr>res, res=rr)); if(res>m, m=res; print(res, ", "))) }
CROSSREFS
Sequence in context: A018471 A240307 A128166 * A112249 A204502 A062437
KEYWORD
nonn,more
AUTHOR
Ralf Stephan, Apr 06 2014
STATUS
approved