The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014262 Inverse of 253rd cyclotomic polynomial. 3
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Periodic with period length 253. - Ray Chandler, Apr 03 2017 In general the expansion of 1/Phi(N) is N-periodic, but also satisfies a linear recurrence of lower order given by degree(Phi(N)) = phi(N) = A000010(N) < N. The signature is given by the coefficients of (1-Phi(N)). - M. F. Hasler, Feb 18 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 MAPLE with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80); MATHEMATICA CoefficientList[Series[1/Cyclotomic[253, x], {x, 0, 200}], x] (* Vincenzo Librandi, Apr 07 2014 *) PROG (PARI) Vec(1/polcyclo(253)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014 CROSSREFS Cf. similar sequences listed in A240328, A240467. Sequence in context: A014691 A014328 A014647 * A014515 A014218 A014427 Adjacent sequences:  A014259 A014260 A014261 * A014263 A014264 A014265 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 00:58 EDT 2021. Contains 347496 sequences. (Running on oeis4.)