login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172634
Number of n X 3 0..2 arrays with row sums 3 and column sums n.
8
1, 1, 7, 31, 175, 991, 5881, 35617, 219871, 1376095, 8710537, 55644337, 358198369, 2320792657, 15120204295, 98984058271, 650725327231, 4293779332927, 28425752310361, 188739799967425, 1256510215733185, 8385127334900305, 56078904057164215, 375796823748323215
OFFSET
0,3
COMMENTS
Inverse binomial transform of the Franel numbers (A000172). - Paul D. Hanna, Feb 26 2012
a(n) is the constant term in the expansion of (1 + x + y + 1/x + 1/y + x/y + y/x)^n. - Seiichi Manyama, Oct 26 2019
a(n) is the constant term in the expansion of (-1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
a(n) is the number of n step closed walks on the hexagonal lattice with loops at each node. A step along a loop leaves the position unchanged. The bijection is as follows: after subtracting 1 from each element in the array, values are -1, 0 or 1 and row and column sums are zero. There are only seven possibilities for each row. An all zero row corresponds with a step along the loop leaving the position unchanged and the others to a unit step in each of the six possible directions. This justifies that this sequence is the binomial transform of A002898. - Andrew Howroyd, May 09 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500 (terms 1..99 from R. H. Hardin)
FORMULA
From Paul D. Hanna, Feb 26 2012: (Start)
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1+x)^n / (1-x)^(3*n+1).
Equals the binomial transform of A002898.
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(n, k) * A000172(k), where A000172(k) = Sum_{j=0..k} binomial(k,j)^3 forms the Franel numbers.
(End)
Recurrence: n^2*a(n) = (2*n-1)^2*a(n-1) + 19*(n-1)^2*a(n-2) + 14*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 7^(n+1)*sqrt(3)/(12*Pi*n). - Vaclav Kotesovec, Oct 20 2012
G.f.: hypergeom([1/3, 1/3],[1],-27*x*(x+1)^2/((1-7*x)^2*(1+2*x)))/((1+2*x)^(1/3)*(1-7*x)^(2/3)). - Mark van Hoeij, May 07 2013
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 31*x^3 + 175*x^4 + 991*x^5 + 5881*x^6 +...
G.f.: A(x) = 1/(1-x) + 6*x^2*(1+x)/(1-x)^4 + 90*x^4*(1+x)^2/(1-x)^7 + 1680*x^6*(1+x)^3/(1-x)^10 + 34650*x^8*(1+x)^4/(1-x)^13 +...+ A006480(n)*x^(2*n)*(1+x)^n/(1-x)^(3*n+1) +...
MATHEMATICA
Table[SeriesCoefficient[Sum[(3*k)!/k!^3*x^(2*k)*(1+x)^k/(1-x)^(3*k+1), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3*x^(2*m)*(1+x)^m/(1-x + x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Feb 26 2012
(PARI) a(n)={sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3))} \\ Andrew Howroyd, May 09 2020
CROSSREFS
Column k=3 of A328747 and A334549.
Sequence in context: A319457 A264608 A208446 * A322205 A139151 A139060
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, May 09 2020
STATUS
approved