login
A319457
a(n) = [x^n] Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^n.
1
1, 1, 7, 31, 175, 931, 5209, 29114, 165087, 940828, 5396777, 31090962, 179832625, 1043516371, 6072302726, 35420582431, 207051636799, 1212583329959, 7113193757656, 41788933655049, 245831162935825, 1447891754747672, 8537111315442222, 50387162650271055, 297664212003582753
OFFSET
0,3
FORMULA
a(n) = [x^n] Product_{k>=1} (1 + x^k)^n/(1 - x^(2*k))^(2*n).
a(n) = [x^n] exp(n*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).
MATHEMATICA
Table[SeriesCoefficient[Product[1/((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[1/(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[Exp[n Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 24}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 19 2018
STATUS
approved