login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272031 Decimal expansion of the Hausdorff dimension of the Heighway-Harter dragon curve boundary. 1
1, 5, 2, 3, 6, 2, 7, 0, 8, 6, 2, 0, 2, 4, 9, 2, 1, 0, 6, 2, 7, 7, 6, 8, 3, 9, 3, 5, 9, 5, 4, 2, 1, 6, 6, 2, 7, 2, 8, 4, 9, 3, 6, 3, 8, 3, 4, 0, 1, 1, 9, 3, 4, 7, 8, 1, 3, 8, 6, 9, 0, 9, 0, 9, 4, 5, 7, 9, 2, 1, 6, 6, 2, 8, 9, 5, 8, 8, 4, 1, 0, 6, 8, 9, 2, 6, 6, 4, 2, 2, 7, 4, 6, 4, 7, 1, 3, 9, 4, 2, 8, 1, 1, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The value for 'twindragon' is the same.

LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..2000

Angel Chang, Tianrong Zhang, On the Fractal Structure of the Boundary of Dragon Curve

Eric Weisstein's World of Mathematics, Dragon curve

Wikipedia, Dragon curve

Wikipedia, List of fractals by Hausdorff dimension

FORMULA

Equals log_2((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3).

EXAMPLE

1.5236270862024921062776839359542166272849363834011934781386909094...

PROG

(PARI) log((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3)/log(2)

CROSSREFS

Cf. A014577.

Sequence in context: A021195 A019673 A229780 * A090183 A063572 A205294

Adjacent sequences:  A272028 A272029 A272030 * A272032 A272033 A272034

KEYWORD

nonn,cons

AUTHOR

Stanislav Sykora, Apr 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 15:06 EDT 2017. Contains 285528 sequences.