%I #17 Sep 19 2019 10:28:55
%S 1,1,3,10,65,371,3780,33552,472971,5736082,97047819,1547576394,
%T 32992294296,626527881617,15202246707840,352290010708120,
%U 9970739854456849,262225912049078193,8309425491887714632,250946978120046026219,8898019305511325083149
%N Number of n-times partitions of n.
%C A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n. The only 0-times partition of n is the number n itself. - _Gus Wiseman_, Jan 27 2019
%H Alois P. Heinz, <a href="/A306187/b306187.txt">Table of n, a(n) for n = 0..410</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%F a(n) = A323718(n,n).
%e From _Gus Wiseman_, Jan 27 2019: (Start)
%e The a(1) = 1 through a(3) = 10 partitions:
%e (1) ((2)) (((3)))
%e ((11)) (((21)))
%e ((1)(1)) (((111)))
%e (((2)(1)))
%e (((11)(1)))
%e (((2))((1)))
%e (((1)(1)(1)))
%e (((11))((1)))
%e (((1)(1))((1)))
%e (((1))((1))((1)))
%e (End)
%p b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
%p 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
%p end:
%p a:= n-> b(n$3):
%p seq(a(n), n=0..25);
%t ptnlevct[n_,k_]:=Switch[k,0,1,1,PartitionsP[n],_,SeriesCoefficient[Product[1/(1-ptnlevct[m,k-1]*x^m),{m,n}],{x,0,n}]];
%t Table[ptnlevct[n,n],{n,0,8}] (* _Gus Wiseman_, Jan 27 2019 *)
%Y Main diagonal of A323718.
%Y Cf. A000041, A306188.
%Y Cf. A001970, A063834, A096752, A196545, A261280, A289501, A290354, A327619.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jan 27 2019