login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A033622
Good sequence of increments for Shell sort (best on big values).
14
1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, 8929, 16001, 36289, 64769, 146305, 260609, 587521, 1045505, 2354689, 4188161, 9427969, 16764929, 37730305, 67084289, 150958081, 268386305, 603906049, 1073643521, 2415771649, 4294770689, 9663381505, 17179475969
OFFSET
0,2
COMMENTS
One of the best sequences of gaps' lengths for Shell sort. Giving asymptotic O(N^(4/3)), therefore it is efficient in case of big N. On small values (approx. < 4000), it is better to use A108870 or A102549. - Roman Dovgopol, May 08 2011
REFERENCES
J. Incerpi, R. Sedgewick, "Improved Upper Bounds for Shellsort", J. Computer and System Sciences 31, 2, 1985. - Roman Dovgopol, May 08 2011
D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed, section 5.2. 1.
R. Sedgewick, J. Algorithms 7 (1986), 159-173 Addison-Wesley. ISBN 0-201-06672-6. - Roman Dovgopol, May 08 2011
FORMULA
a(n) = 9*2^n - 9*2^(n/2) + 1 if n is even;
a(n) = 8*2^n - 6*2^((n+1)/2) + 1 if n is odd.
G.f.: (8*x^4 + 2*x^3 - 8*x^2 - 4*x - 1)/((x-1)*(2*x+1)*(2*x-1)*(2*x^2-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(0)=1, a(1)=5, a(2)=19, a(3)=41, a(4)=109, a(n)=a(n-1)+6*a(n-2)- 6*a(n-3)- 8*a(n-4)+8*a(n-5). - Harvey P. Dale, Mar 02 2015
MAPLE
A033622 := proc(n) return (9-(n mod 2))*2^n-(9-3*(n mod 2))*2^ceil(n/2)+1: end: seq(A033622(n), n=0..29); # Nathaniel Johnston, May 08 2011
MATHEMATICA
Table[If[EvenQ[n], 9*2^n-9*2^(n/2)+1, 8*2^n-6*2^((n+1)/2)+1], {n, 0, 30}] (* or *) LinearRecurrence[{1, 6, -6, -8, 8}, {1, 5, 19, 41, 109}, 30] (* Harvey P. Dale, Mar 02 2015 *)
PROG
(C) int sedg(int i){ return (i%2) ? (9*(2<<i)-9*(2<<(i/2))+1) : (8*(2<<i)-6*(2<<((i+1)/2))+1); } /* Roman Dovgopol, May 08 2011 */
CROSSREFS
Sequences used for Shell sort: A003462, A033622, A036562, A036564, A036569, A055875, A102549, A108870.
Sequence in context: A100572 A119534 A306190 * A091568 A147307 A234801
KEYWORD
nonn,easy
AUTHOR
STATUS
approved