login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036690 Product of a prime and the following number. 10
6, 12, 30, 56, 132, 182, 306, 380, 552, 870, 992, 1406, 1722, 1892, 2256, 2862, 3540, 3782, 4556, 5112, 5402, 6320, 6972, 8010, 9506, 10302, 10712, 11556, 11990, 12882, 16256, 17292, 18906, 19460, 22350, 22952, 24806, 26732, 28056, 30102 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The infinite sum over the reciprocals is given in A179119. - Wolfdieter Lang, Jul 10 2019

1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. - Amiram Eldar, Jan 23 2021

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = prime(n)*(prime(n)+1).

a(n) = A060800(n) - 1.

a(n) = 2*A034953(n). - Artur Jasinski, Feb 06 2007

From Amiram Eldar, Jan 23 2021: (Start)

Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).

Product_{n>=1} (1 - 1/a(n)) = A065463. (End)

EXAMPLE

a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.

MATHEMATICA

Table[(Prime[n] + 1) Prime[n], {n, 1, 100}] (* Artur Jasinski, Feb 06 2007 *)

PROG

(MAGMA)[p^2+p: p in PrimesUpTo(250)]; // Vincenzo Librandi, Dec 19 2010

(PARI) a(n)=my(p=prime(n)); p*(p+1) \\ Charles R Greathouse IV, Mar 27 2020

CROSSREFS

Cf. A036689, A034953, A065463, A179119, A306633.

Sequence in context: A071342 A125056 A011987 * A229746 A256579 A322374

Adjacent sequences:  A036687 A036688 A036689 * A036691 A036692 A036693

KEYWORD

nonn,easy

AUTHOR

Felice Russo

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 07:38 EST 2021. Contains 341631 sequences. (Running on oeis4.)