|
|
A036690
|
|
Product of a prime and the following number.
|
|
10
|
|
|
6, 12, 30, 56, 132, 182, 306, 380, 552, 870, 992, 1406, 1722, 1892, 2256, 2862, 3540, 3782, 4556, 5112, 5402, 6320, 6972, 8010, 9506, 10302, 10712, 11556, 11990, 12882, 16256, 17292, 18906, 19460, 22350, 22952, 24806, 26732, 28056, 30102
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The infinite sum over the reciprocals is given in A179119. - Wolfdieter Lang, Jul 10 2019
1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. - Amiram Eldar, Jan 23 2021
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
a(n) = prime(n)*(prime(n)+1).
a(n) = A060800(n) - 1.
a(n) = 2*A034953(n). - Artur Jasinski, Feb 06 2007
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).
Product_{n>=1} (1 - 1/a(n)) = A065463. (End)
|
|
EXAMPLE
|
a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.
|
|
MATHEMATICA
|
Table[(Prime[n] + 1) Prime[n], {n, 1, 100}] (* Artur Jasinski, Feb 06 2007 *)
|
|
PROG
|
(MAGMA)[p^2+p: p in PrimesUpTo(250)]; // Vincenzo Librandi, Dec 19 2010
(PARI) a(n)=my(p=prime(n)); p*(p+1) \\ Charles R Greathouse IV, Mar 27 2020
|
|
CROSSREFS
|
Cf. A036689, A034953, A065463, A179119, A306633.
Sequence in context: A071342 A125056 A011987 * A229746 A256579 A322374
Adjacent sequences: A036687 A036688 A036689 * A036691 A036692 A036693
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Felice Russo
|
|
STATUS
|
approved
|
|
|
|