login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A036690
Product of a prime and the following number.
15
6, 12, 30, 56, 132, 182, 306, 380, 552, 870, 992, 1406, 1722, 1892, 2256, 2862, 3540, 3782, 4556, 5112, 5402, 6320, 6972, 8010, 9506, 10302, 10712, 11556, 11990, 12882, 16256, 17292, 18906, 19460, 22350, 22952, 24806, 26732, 28056, 30102
OFFSET
1,1
COMMENTS
The infinite sum over the reciprocals is given in A179119. - Wolfdieter Lang, Jul 10 2019
1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. - Amiram Eldar, Jan 23 2021
LINKS
FORMULA
a(n) = prime(n)*(prime(n)+1).
a(n) = A060800(n) - 1.
a(n) = 2*A034953(n). - Artur Jasinski, Feb 06 2007
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).
Product_{n>=1} (1 - 1/a(n)) = A065463. (End)
EXAMPLE
a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.
MATHEMATICA
Table[(Prime[n] + 1) Prime[n], {n, 1, 100}] (* Artur Jasinski, Feb 06 2007 *)
PROG
(Magma)[p^2+p: p in PrimesUpTo(250)]; // Vincenzo Librandi, Dec 19 2010
(PARI) a(n)=my(p=prime(n)); p*(p+1) \\ Charles R Greathouse IV, Mar 27 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved