login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A125056
a(n) is the largest positive integer such that floor(a(n)/d(a(n))) = n, where d(m) is the number of positive divisors of m.
4
6, 12, 30, 48, 60, 72, 120, 96, 144, 180, 140, 240, 216, 252, 360, 336, 420, 224, 312, 480, 504, 540, 378, 720, 600, 840, 660, 672, 352, 364, 756, 780, 1080, 960, 1260, 864, 594, 924, 936, 1440, 1320, 1680, 1050, 1056, 1092, 1120, 1512, 1560
OFFSET
1,1
COMMENTS
We know the sequence is well-defined given the limit x/d(x) > 0.5*sqrt(x) from comments in A036763.
Does every positive integer n equal floor(m/d(m)) for some m?
LINKS
Hugo van der Sanden and D. W. Wilson, Table of n, a(n) for n = 1..10000
MATHEMATICA
t = Table[ Floor[ n / DivisorSigma[0, n]], {n, 10^5}]; f[n_] := Max@ Flatten@ Position[t, n]; Array[f, 51] (* Robert G. Wilson v, Jan 12 2007 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo van der Sanden, Jan 09 2007
STATUS
approved