

A118127


Number of quasigroups of order <= n.


0



1, 2, 3, 8, 43, 1454, 1131985, 12199587820, 2697830531268481, 15224736759268778589978, 2750892227033887206264514123491
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A quasigroup is a groupoid G such that for all a and b in G, there exist unique c and d in G such that ac = b and da = b. Hence a quasigroup is not required to have an identity element, nor be associative. Equivalently, one can state that quasigroups are precisely groupoids whose multiplication tables are Latin squares (possibly empty).


LINKS

Table of n, a(n) for n=1..11.
Index entries for sequences related to quasigroups.


FORMULA

a(n) = SUM[i=0..n] A057991(i).


EXAMPLE

a(10) = 2750892227033887206264514123491 = 1 + 1 + 1 + 5 + 35 + 1411 + 1130531 + 12198455835 + 2697818331680661 + 15224734061438247321497 + 2750892211809150446995735533513.


CROSSREFS

Cf. A002860, A057991A057994, A057771, A057996, A118641.
Sequence in context: A127005 A042553 A042139 * A100644 A013208 A094370
Adjacent sequences: A118124 A118125 A118126 * A118128 A118129 A118130


KEYWORD

nonn


AUTHOR

Jonathan Vos Post, May 12 2006


STATUS

approved



