login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A241420
Decimal expansion of D(1/2), where D(x) is the infinite product function defined in the formula section (or in the Finch reference).
3
1, 5, 4, 9, 1, 2, 6, 5, 9, 2, 5, 7, 7, 5, 6, 2, 1, 6, 8, 3, 6, 9, 5, 7, 2, 5, 3, 3, 8, 4, 9, 4, 0, 9, 9, 2, 6, 9, 3, 7, 0, 2, 9, 8, 6, 3, 4, 1, 0, 0, 4, 8, 3, 6, 2, 8, 9, 9, 9, 9, 6, 7, 1, 0, 3, 9, 9, 8, 3, 8, 0, 0, 8, 3, 6, 5, 4, 3, 2, 9, 8, 7, 4, 0, 6, 5, 1, 1, 4, 0, 9, 2, 0, 7, 0, 0, 8, 0, 6, 1, 5, 4, 6, 4
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 136.
LINKS
Eric Weisstein's MathWorld, Barnes G-Function
Eric Weisstein's MathWorld, Catalan's Constant
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant
FORMULA
D(x) = lim_{n->infinity} ( prod_{k=1..2n+1} (1+x/k)^((-1)^(k+1)*k) ).
D(x) = (e^(x/2-1/4)*A^3*G((x+1)/2)^2*Gamma(x/2)^(x-2)*Gamma((x+1)/2)^(1-x)*(Gamma((x+1)/2)/Gamma(x/2))^x)/(2^(1/12)*G(x/2)^2), where A is the Glaisher-Kinkelin constant and G is the Barnes G-function.
D(1/2) = (e^(C/Pi)*A^3*sqrt(Gamma(3/4)/Gamma(1/4)))/2^(1/12), where C is Catalan's constant.
EXAMPLE
1.54912659257756216836957253384940992693702986341004836289999671...
MATHEMATICA
(E^(Catalan/Pi)*Glaisher^3*Sqrt[Gamma[3/4]/Gamma[1/4]])/2^(1/12) // RealDigits[#, 10, 104]& // First
PROG
(PARI) default(realprecision, 100); A=exp(1/12-zeta'(-1)); exp(Catalan/Pi)*A^3*sqrt(gamma(3/4)/gamma(1/4))/2^(1/12) \\ G. C. Greubel, Aug 24 2018
CROSSREFS
Cf. A006752, A019610 (D(2)), A074962, A241421 (D(1)).
Sequence in context: A090124 A338346 A097943 * A077142 A156057 A125057
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved