The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241423 Largest number k > 0 such that n + k! is prime, or 0 if no such k exists. 2
 1, 2, 1, 4, 1, 6, 0, 2, 1, 10, 1, 6, 0, 2, 1, 11, 1, 14, 0, 2, 1, 16, 0, 3, 0, 2, 1, 20, 1, 22, 0, 0, 0, 4, 1, 33, 0, 2, 1, 25, 1, 38, 0, 2, 1, 44, 0, 6, 0, 2, 1, 52, 0, 4, 0, 2, 1, 27, 1, 50, 0, 0, 0, 4, 1, 64, 0, 2, 1, 55, 1, 67, 0, 0, 0, 6, 1, 73, 0, 2, 1, 68, 0, 4, 0, 2, 1, 52, 0, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS If k >= n, then n + k! is divisible by n and is not prime. a(n) < A020639(n), because if prime p divides n then p divides n + k! for k >= p. - Robert Israel, Aug 10 2014 There is no term for n = 1 since factorial primes 1 + k! can probably be arbitrarily large (A002981 shows k values). - Jens Kruse Andersen, Aug 13 2014 LINKS Jens Kruse Andersen, Table of n, a(n) for n = 2..1000 MAPLE a:= proc(n) local k; for k from min(numtheory:-factorset(n)) to 1 by -1 do   if isprime(n+k!)  then return(k) fi od: 0 end proc: seq(a(n), n=2..100); # Robert Israel, Aug 10 2014 MATHEMATICA a[n_] := Module[{k}, For[k = FactorInteger[n][[1, 1]], k >= 1, k--, If[PrimeQ[n + k!], Return[k]]]; 0]; a /@ Range[2, 100] (* Jean-François Alcover, Jul 27 2020, after Maple *) PROG (PARI) a(n)=forstep(k=n, 1, -1, if(ispseudoprime(n+k!), return(k))) n=2; while(n<150, print1(a(n), ", "); n++) CROSSREFS Cf. A245714, A125162. Sequence in context: A216952 A114326 A308175 * A323244 A329642 A214052 Adjacent sequences:  A241420 A241421 A241422 * A241424 A241425 A241426 KEYWORD nonn AUTHOR Derek Orr, Aug 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 03:42 EDT 2020. Contains 337420 sequences. (Running on oeis4.)