OFFSET
2,2
COMMENTS
If k >= n, then n + k! is divisible by n and is not prime.
a(n) < A020639(n), because if prime p divides n then p divides n + k! for k >= p. - Robert Israel, Aug 10 2014
There is no term for n = 1 since factorial primes 1 + k! can probably be arbitrarily large (A002981 shows k values). - Jens Kruse Andersen, Aug 13 2014
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 2..1000
MAPLE
a:= proc(n)
local k;
for k from min(numtheory:-factorset(n)) to 1 by -1 do
if isprime(n+k!) then return(k) fi
od:
0
end proc:
seq(a(n), n=2..100); # Robert Israel, Aug 10 2014
MATHEMATICA
a[n_] := Module[{k}, For[k = FactorInteger[n][[1, 1]], k >= 1, k--, If[PrimeQ[n + k!], Return[k]]]; 0];
a /@ Range[2, 100] (* Jean-François Alcover, Jul 27 2020, after Maple *)
PROG
(PARI)
a(n)=forstep(k=n, 1, -1, if(ispseudoprime(n+k!), return(k)))
n=2; while(n<150, print1(a(n), ", "); n++)
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Aug 08 2014
STATUS
approved