login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A241417
Number of partitions p of n such that the number of numbers p having multiplicity 1 in p is not a part and the number of numbers having multiplicity > 1 is not a part.
6
1, 0, 1, 1, 3, 2, 4, 5, 9, 9, 14, 18, 23, 24, 36, 39, 51, 61, 79, 92, 123, 148, 195, 237, 297, 359, 464, 552, 679, 822, 1012, 1183, 1465, 1707, 2075, 2438, 2956, 3433, 4173, 4851, 5837, 6837, 8218, 9554, 11518, 13396, 16022, 18697, 22300, 25923, 30873, 35838
OFFSET
0,5
FORMULA
a(n) + A239737(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 4 partitions: 6, 51, 33, 222.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]
Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 23 2014
STATUS
approved