OFFSET
0,6
EXAMPLE
a(6) counts these 5 partitions: 42, 411, 321, 3111, 21111; e.g., 411 is counted because 1 part of 411 has multiplicity 1, and 1 is a part of 411.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]
Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 23 2014
STATUS
approved