login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241413 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is a part of p. 6
0, 1, 0, 1, 1, 4, 5, 8, 10, 17, 21, 29, 38, 59, 68, 100, 124, 170, 214, 288, 351, 470, 576, 743, 921, 1176, 1430, 1816, 2214, 2753, 3364, 4176, 5015, 6215, 7478, 9120, 10966, 13351, 15916, 19301, 22982, 27618, 32846, 39354, 46515, 55570, 65598, 77842, 91730 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
EXAMPLE
a(6) counts these 5 partitions: 42, 411, 321, 3111, 21111; e.g., 411 is counted because 1 part of 411 has multiplicity 1, and 1 is a part of 411.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]
Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)
CROSSREFS
Sequence in context: A022435 A190394 A116050 * A056721 A057479 A050140
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 23 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:06 EST 2023. Contains 367696 sequences. (Running on oeis4.)