login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190394
Maximum number of nonattacking nightriders on an n X n board.
3
1, 4, 5, 8, 10, 16, 17, 20, 21, 24, 26, 32, 33, 36, 39, 42, 45, 48, 51, 54, 58, 64, 65, 66, 68, 72, 75, 80, 81, 84, 87, 90, 93
OFFSET
1,2
COMMENTS
A nightrider is a fairy chess piece that can move any distance in a direction specified by a knight move.
Maximum number of nonattacking nightriders on an n X n toroidal board is n.
LINKS
FORMULA
2n <= a(n) <= 3n-2, for n > 3.
a(n) >= 24*floor((n+4)/10)-8, for n >= 6. - Vaclav Kotesovec, Apr 01 2012
EXAMPLE
From Rob Pratt, Jul 24 2015: (Start)
a(20) = 54:
XX--XXXX---X------XX
XX---------X--XX--XX
--------------------
---X----------------
X-----------------X-
X-----------------X-
X-------------------
X---------X---------
------------------XX
------------X-------
-------X------------
XX------------------
---------X---------X
-------------------X
-X-----------------X
-X-----------------X
----------------X---
--------------------
XX--XX--X---------XX
XX------X---XXXX--XX
(End)
CROSSREFS
KEYWORD
nonn,nice,hard,more
AUTHOR
Vaclav Kotesovec, May 10 2011
EXTENSIONS
Terms a(11)-a(16) from Vaclav Kotesovec, May 13 2011
Terms a(17)-a(19) from Vaclav Kotesovec, Apr 01 2012
a(20) from Rob Pratt, Jul 24 2015
a(21)-a(32) from Paul Tabatabai, Nov 06 2018
a(33) from Andy Huchala, Mar 30 2024
STATUS
approved