The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036692 T(2n,n) with T as in A036355. 2
 1, 2, 14, 84, 556, 3736, 25612, 177688, 1244398, 8777612, 62271384, 443847648, 3175924636, 22799963576, 164142004184, 1184574592592, 8567000931404, 62073936511496, 450518481039956, 3274628801768744, 23833760489660324 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From N. J. A. Sloane, Jul 14 2009: (Start) The following remarks and formulas are basically copied from the Apagodu-Zeilberger reference, where this sequence appears as an example. These are the (old-time) basketball numbers, giving the number of ways a basketball game that ended with the score n : n can proceed. Recall that in the old days (before 1961), an atom of basketball-scoring could be only of one or two points. Equivalently, this number is the number of ways of walking, in the square lattice, from (0; 0) to (n; n) using the atomic steps {(1; 0); (2; 0); (0; 1); (0; 2)}. It satisfies the third-order linear recurrence: (16/5)(2n + 3)(11n + 26)(1 + n)/((n + 3)(2 + n)(11n + 15))a(n) -(4/5)(121n^3 + 649n^2 + 1135n + 646)/((n + 3)(2 + n)(11n + 15))a(1 + n) -(2/5)(176n^2 + 680n + 605)/((11n + 15)(n + 3))a(2 + n) + a(n + 3) = 0 ; subject to the initial conditions: a(0) = 1; a(1) = 2; a(2) = 14 : Asymptotics: (0.37305616)(4 + 2*sqrt(3))^n*n^(-1/2)(1 + (67/1452)*sqrt(3) -(119/484))/n +((6253/117128) -(7163/234256)sqrt(3))/n^2 +(-(32645/ 15460896) sqrt(3) +(129625/10307264))/n^3). (End) In closed form, multiplicative constant is sqrt((15+8*sqrt(3))/(66*Pi)) = 0.37305616313160230... - Vaclav Kotesovec, Oct 24 2012 Diagonal of rational function 1/(1 - (x + y + x^2 + y^2)). - Gheorghe Coserea, Aug 06 2018 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Moa Apagodu and Doron Zeilberger, FIVE Applications of Wilf-Zeilberger Theory to Enumeration and Probability FORMULA G.f.: ((3-4*x+2*(4*x^2-8*x+1)^(1/2))/((8*x+5)*(4*x^2-8*x+1)))^(1/2). - Mark van Hoeij, Oct 30 2011 MATHEMATICA CoefficientList[Series[((3-4*x+2*(4*x^2-8*x+1)^(1/2))/((8*x+5)*(4*x^2-8*x+1)))^(1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *) PROG (PARI) /* same as in A092566 but use */ steps=[[1, 0], [2, 0], [0, 1], [0, 2]]; /* Joerg Arndt, Jun 30 2011 */ (Haskell) a036692 n = a036355 (2 * n) n  -- Reinhard Zumkeller, Apr 24 2013 CROSSREFS Cf. A000984, A036355. Sequence in context: A138126 A268881 A053141 * A075140 A037563 A005610 Adjacent sequences:  A036689 A036690 A036691 * A036693 A036694 A036695 KEYWORD nonn AUTHOR EXTENSIONS Extended by Christian G. Bower, Nov 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 21:27 EDT 2020. Contains 337315 sequences. (Running on oeis4.)