login
a(n) = (n - 1)*prime(n + 1).
4

%I #16 Sep 08 2022 08:46:21

%S 0,5,14,33,52,85,114,161,232,279,370,451,516,611,742,885,976,1139,

%T 1278,1387,1580,1743,1958,2231,2424,2575,2782,2943,3164,3683,3930,

%U 4247,4448,4917,5134,5495,5868,6179,6574,6981,7240,7831,8106,8471,8756,9495,10258

%N a(n) = (n - 1)*prime(n + 1).

%C For n > 1, a(n) is the subdiagonal sum of the matrix M(n) whose determinant is A318173(n).

%H Stefano Spezia, <a href="/A306192/b306192.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A033286(n + 1) - 2*A000040(n + 1).

%F a(n) = (n - 1)/(n + 1)*A033286(n + 1).

%p a := n -> (n-1)*ithprime(n+1): seq(a(n), n = 1 .. 100);

%t a[n_]:=(n-1)*Prime[n+1]; Array[a,100]

%o (Magma) [(n-1)*NthPrime(n+1): n in [1..100]];

%o (PARI) a(n) = (n-1)*prime(n+1);

%o (Python)

%o from sympy import prime

%o [(n-1)*prime(n+1) for n in range(1,100)]

%Y Cf. A000040, A033286, A318173.

%K nonn,easy

%O 1,2

%A _Stefano Spezia_, Jan 28 2019