Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:46:21
%S 0,5,14,33,52,85,114,161,232,279,370,451,516,611,742,885,976,1139,
%T 1278,1387,1580,1743,1958,2231,2424,2575,2782,2943,3164,3683,3930,
%U 4247,4448,4917,5134,5495,5868,6179,6574,6981,7240,7831,8106,8471,8756,9495,10258
%N a(n) = (n - 1)*prime(n + 1).
%C For n > 1, a(n) is the subdiagonal sum of the matrix M(n) whose determinant is A318173(n).
%H Stefano Spezia, <a href="/A306192/b306192.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A033286(n + 1) - 2*A000040(n + 1).
%F a(n) = (n - 1)/(n + 1)*A033286(n + 1).
%p a := n -> (n-1)*ithprime(n+1): seq(a(n), n = 1 .. 100);
%t a[n_]:=(n-1)*Prime[n+1]; Array[a,100]
%o (Magma) [(n-1)*NthPrime(n+1): n in [1..100]];
%o (PARI) a(n) = (n-1)*prime(n+1);
%o (Python)
%o from sympy import prime
%o [(n-1)*prime(n+1) for n in range(1,100)]
%Y Cf. A000040, A033286, A318173.
%K nonn,easy
%O 1,2
%A _Stefano Spezia_, Jan 28 2019