Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 05 2022 13:53:22
%S 1,3,3,3,6,9,12,15,21,30,36,45,60,78,96,117,150,189,228,276,342,420,
%T 504,603,732,885,1050,1245,1488,1773,2088,2454,2901,3420,3996,4662,
%U 5460,6378,7404,8583,9972,11565,13344,15378,17748,20448,23472,26910,30876
%N Expansion of chi(q)^3 / chi(q^3) in powers of q where chi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A132972/b132972.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of eta(q^2)^6 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)3 * eta(q^12)) in powers of q.
%F Euler transform of period 12 sequence [ 3, -3, 2, 0, 3, -2, 3, 0, 2, -3, 3, 0, ...].
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 + u*v) * (u*v - 1)^3 - (u - u^4) * (v - v^4).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (4 - 2*u + u^2) - v^3 * (1 + u + u^2).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (2 + u1 * u2) - u3 * u6 * (1 + u1 + u2).
%F G.f. is a period 1 Fourier series which satisfies f(-1/(144*t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A062244.
%F G.f.: Product_{k>0} (1 + x^(2*k-1))^3 / (1 + x^(6*k-3)).
%F a(n) = 3 * A132975(n) unless n=0.
%F Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*a(n) = (-2 + 2*sqrt(3))^(1/3). - Simon Plouffe, Feb 20 2011
%F a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Sep 08 2015
%F It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - (-1)^(n+1)*x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - (-1)^n*x^(3*n + 2))) ). Cf. A273845. - _Peter Bala_, Dec 23 2021
%e G.f. = 1 + 3*q + 3*q^2 + 3*q^3 + 6*q^4 + 9*q^5 + 12*q^6 + 15*q^7 + 21*q^8 + ...
%t nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^3 / (1 + x^(6*k-3)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 08 2015 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^3 / QPochhammer[ -q^3, q^6], {q, 0, n}]; (* _Michael Somos_, Oct 31 2015 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^2), n))};
%Y Cf. A062244, A132975, A273845.
%K nonn
%O 0,2
%A _Michael Somos_, Sep 06 2007