login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132971
a(2*n) = a(n), a(4*n+1) = -a(n), a(4*n+3) = 0, with a(0) = 1.
8
1, -1, -1, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 1, -1
OFFSET
0,1
COMMENTS
If binary(n) has adjacent 1 bits then a(n) = 0 else a(n) = (-1)^A000120(n).
Fibbinary numbers (A003714) gives the numbers n for which a(n) = A106400(n). - Antti Karttunen, May 30 2017
LINKS
Paul Tarau, Emulating Primality with Multiset Representations of Natural Numbers, in Theoretical Aspects of Computing, ICTAC 2011, Lecture Notes in Computer Science, 2011, Volume 6916/2011, 218-238, DOI: 10.1007/978-3-642-23283-1_15.
FORMULA
A024490(n) = number of solutions to 2^n <= k < 2^(n+1) and a(k) = 1.
A005252(n) = number of solutions to 2^n <= k < 2^(n+1) and a(k) = -1.
A027935(n-1) = number of solutions to 2^n <= k < 2^(n+1) and a(k) = 0.
G.f. A(x) satisfies A(x) = A(x^2) - x * A(x^4).
G.f. B(x) of A000621 satisfies B(x) = x * A(x^2) / A(x).
a(n) = A008683(A005940(1+n)). [Analogous to Moebius mu] - Antti Karttunen, May 30 2017
EXAMPLE
G.f. = 1 - x - x^2 - x^4 + x^5 - x^8 + x^9 + x^10 - x^16 + x^17 + x^18 + ...
MATHEMATICA
m = 100; A[_] = 1;
Do[A[x_] = A[x^2] - x A[x^4] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 16 2019 *)
PROG
(PARI) {a(n) = if( n<1, n==0, if( n%2, if( n%4 > 1, 0, -a((n-1)/4) ), a(n/2) ) )};
(PARI) {a(n) = my(A, m); if( n<0, 0, m = 1; A = 1 + O(x); while( m<=n, m *= 2; A = subst(A, x, x^2) - x * subst(A, x, x^4) ); polcoeff(A, n)) };
(Scheme) (define (A132971 n) (cond ((zero? n) 1) ((even? n) (A132971 (/ n 2))) ((= 1 (modulo n 4)) (- (A132971 (/ (- n 1) 4)))) (else 0))) ;; Antti Karttunen, May 30 2017
(Python)
from sympy import mobius, prime, log
import math
def A(n): return n - 2**int(math.floor(log(n, 2)))
def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
def a(n): return mobius(b(n)) # Indranil Ghosh, May 30 2017
CROSSREFS
Cf. A085357 (gives the absolute values: -1 -> 1), A286576 (when reduced modulo 3: -1 -> 2).
Sequence in context: A097806 A167374 A294821 * A085357 A011748 A145361
KEYWORD
sign
AUTHOR
Michael Somos, Sep 17 2007, Sep 19 2007
STATUS
approved