login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246837
Expansion of phi(x) * psi(x) * psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.
2
1, 3, 2, 1, 5, 5, 3, 5, 4, 4, 6, 6, 3, 5, 9, 6, 10, 4, 3, 13, 4, 5, 9, 8, 5, 8, 12, 4, 13, 10, 7, 14, 5, 5, 11, 8, 9, 12, 6, 7, 15, 15, 6, 13, 12, 6, 13, 6, 7, 21, 17, 6, 13, 8, 10, 12, 14, 9, 8, 15, 6, 22, 8, 9, 22, 14, 10, 11, 15, 11, 22, 16, 6, 8, 14, 11
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q^2)^7 * eta(q^8)^2 / (eta(q)^3 * eta(q^4)^3) in powers of q.
Euler transform of period 8 sequence [3, -4, 3, -1, 3, -4, 3, -3, ...].
EXAMPLE
G.f. = 1 + 3*x + 2*x^2 + x^3 + 5*x^4 + 5*x^5 + 3*x^6 + 5*x^7 + 4*x^8 + ...
G.f. = q^5 + 3*q^13 + 2*q^21 + q^29 + 5*q^37 + 5*q^45 + 3*q^53 + 5*q^61 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-5/8)* eta[q^2]^7*eta[q^8]^2/(eta[q]^3*eta[q^4]^3), {q, 0, 60}], q]]; Table[ a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 05 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^8 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^3), n))};
CROSSREFS
Sequence in context: A068389 A091597 A091595 * A132969 A132970 A192022
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 04 2014
STATUS
approved