login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139377
A Jacobsthal-Catalan triangle.
3
1, 1, 1, 3, 2, 1, 5, 6, 3, 1, 11, 15, 10, 4, 1, 21, 41, 30, 15, 5, 1, 43, 113, 92, 51, 21, 6, 1, 85, 327, 284, 171, 79, 28, 7, 1, 171, 982, 897, 570, 286, 115, 36, 8, 1, 341, 3066, 2895, 1913, 1016, 446, 160, 45, 9, 1
OFFSET
0,4
COMMENTS
First column is A001045(n+1). Second column is A139379. Row sums are A139379(n+1).
Diagonal sums are A135582. Inverse of the Riordan array (1-x-x^2+4x^3-2x^4,x(1-x)).
FORMULA
Riordan array (1/(1-x-2x^2), xc(x)) where c(x) is the g.f. of A000108
From Peter Bala, Feb 20 2018: (Start)
Define a(n) = floor(2^(n+2)/3) - floor(2^(n+1)/3) = A001045(n+1). Then T(n,0) = a(n) and T(n,k) = Sum_{j = 0..n-k} a(j)*k/(2*n-k-2*j)*binomial(2*n-k-2*j,n-k-j) for 1 <= k <= n.
Define b(n) = (2/3)*(1+i)^(n-1) + (2/3)*(1-i)^(n-1) - (4/3)*(1+i)^(n-2) - (4/3)*(1-i)^(n-2) + (1/3)*(-1)^n*Fibonacci(n+1) + (2/3)*(-1)^n*Fibonacci(n). Then T(n,k) = Sum_{j = 0..n-k} b(j)*binomial(2*n-k-j,n) for 0 <= k <= n.
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 - 2*x)/((1 - x)*(1 + x - x^2)*(1 - 2*x + 2*x^2)) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 2*x)/((1 - x)*(1 + x - x^2)*(1 - 2*x + 2*x^2)) * 1/(1 - x)^4 = (11*x^4 + 15*x^3 + 10*x^2 + 4*x + 1) + O(x^5). (End)
EXAMPLE
Triangle begins
1;
1, 1;
3, 2, 1;
5, 6, 3, 1;
11, 15, 10, 4, 1;
21, 41, 30, 15, 5, 1;
43, 113, 92, 51, 21, 6, 1;
85, 327, 284, 171, 79, 28, 7, 1;
171, 982, 897, 570, 286, 115, 36, 8, 1;
The production matrix for this array is
1, 1,
2, 1, 1,
-2, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1
MAPLE
#define auxiliary sequence
with(combinat):
b := proc (n)
(2/3)*(1+I)^(n-1) + (2/3)*(1-I)^(n-1) - (4/3)*(1+I)^(n-2)-(4/3)*(1-I)^(n-2) + (1/3)*(-1)^n*fibonacci(n+1) + (2/3)*(-1)^n*fibonacci(n);
end proc:
A139377 := proc (n, k)
add(b(j)*binomial(2*n-k-j, n), j = 0..n-k);
end proc:
#display sequence as a triangle
for n from 0 to 10 do
seq(A139377(n, k), k = 0..n);
end do; # Peter Bala, Feb 20 2018
CROSSREFS
Cf. A001045 (first column), A139379 (second column and row sums), A135582 (sums along shallow diagonals).
Sequence in context: A192022 A208608 A209577 * A368607 A138483 A110712
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 15 2008
STATUS
approved