OFFSET
0,4
COMMENTS
FORMULA
Riordan array (1/(1-x-2x^2), xc(x)) where c(x) is the g.f. of A000108
From Peter Bala, Feb 20 2018: (Start)
Define a(n) = floor(2^(n+2)/3) - floor(2^(n+1)/3) = A001045(n+1). Then T(n,0) = a(n) and T(n,k) = Sum_{j = 0..n-k} a(j)*k/(2*n-k-2*j)*binomial(2*n-k-2*j,n-k-j) for 1 <= k <= n.
Define b(n) = (2/3)*(1+i)^(n-1) + (2/3)*(1-i)^(n-1) - (4/3)*(1+i)^(n-2) - (4/3)*(1-i)^(n-2) + (1/3)*(-1)^n*Fibonacci(n+1) + (2/3)*(-1)^n*Fibonacci(n). Then T(n,k) = Sum_{j = 0..n-k} b(j)*binomial(2*n-k-j,n) for 0 <= k <= n.
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 - 2*x)/((1 - x)*(1 + x - x^2)*(1 - 2*x + 2*x^2)) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 2*x)/((1 - x)*(1 + x - x^2)*(1 - 2*x + 2*x^2)) * 1/(1 - x)^4 = (11*x^4 + 15*x^3 + 10*x^2 + 4*x + 1) + O(x^5). (End)
EXAMPLE
Triangle begins
1;
1, 1;
3, 2, 1;
5, 6, 3, 1;
11, 15, 10, 4, 1;
21, 41, 30, 15, 5, 1;
43, 113, 92, 51, 21, 6, 1;
85, 327, 284, 171, 79, 28, 7, 1;
171, 982, 897, 570, 286, 115, 36, 8, 1;
The production matrix for this array is
1, 1,
2, 1, 1,
-2, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1
MAPLE
#define auxiliary sequence
with(combinat):
b := proc (n)
(2/3)*(1+I)^(n-1) + (2/3)*(1-I)^(n-1) - (4/3)*(1+I)^(n-2)-(4/3)*(1-I)^(n-2) + (1/3)*(-1)^n*fibonacci(n+1) + (2/3)*(-1)^n*fibonacci(n);
end proc:
A139377 := proc (n, k)
add(b(j)*binomial(2*n-k-j, n), j = 0..n-k);
end proc:
#display sequence as a triangle
for n from 0 to 10 do
seq(A139377(n, k), k = 0..n);
end do; # Peter Bala, Feb 20 2018
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Apr 15 2008
STATUS
approved