login
A135582
Expansion of 1/((1-x^2*c(x))(1-x-2x^2)) where c(x) is the g.f. of A000108.
2
1, 1, 4, 7, 18, 39, 95, 232, 606, 1663, 4839, 14807, 47330, 156611, 532308, 1846622, 6507103, 23210020, 83590477, 303425693, 1108650850, 4073443378, 15039391464, 55763147423, 207543422052, 775082175863, 2903508757053, 10907257755616
OFFSET
0,3
COMMENTS
Diagonal sums of the Jacobsthal-Catalan triangle A139377.
LINKS
FORMULA
a(n) = Sum_{k=0..n} J(k+1)*A132364(n-k) where J(n)=A001045(n), Jacobsthal numbers.
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +(-7*n+19)*a(n-2) +(-7*n+13)*a(n-3) +(13*n-31)*a(n-4) +2*(-n+4)*a(n-5) +4*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 23 2015
MATHEMATICA
Jacobsthal[n_]:= (2^n - (-1)^n)/3; g[0]:= 1; g[n_] := Sum[(i/(n - i)) * Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_]:= Sum[Jacobsthal[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 15 2008
STATUS
approved