login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139376
Expansion of 1/((1-x^2*c(x))(1-x-x^2)) where c(x) is the g.f. of A000108.
2
1, 1, 3, 5, 11, 23, 54, 136, 374, 1103, 3441, 11186, 37472, 128325, 446834, 1576251, 5618950, 20204874, 73190075, 266810125, 978044403, 3602795670, 13329486459, 49509151332, 184540129492, 690061739789, 2587941606367, 9731587992993
OFFSET
0,3
COMMENTS
Diagonal sums of the Fibonacci-Catalan triangle A139375.
LINKS
FORMULA
a(n) = Sum_{k=0..n} F(k+1)*A132364(n-k).
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +4*(-2*n+5)*a(n-2) +2*(-n+1)*a(n-3) +3*(3*n-7)*a(n-4) +3*(-n+3)*a(n-5) +2*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 05 2015
MATHEMATICA
g[0]:= 1; g[n_]:= Sum[(i/(n - i))*Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_] := Sum[Fibonacci[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)
CROSSREFS
Sequence in context: A269964 A305412 A094810 * A074892 A074874 A051439
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 15 2008
STATUS
approved