login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208604
Expansion of phi(-q) / phi(q^4) in powers of q where phi() is a Ramanujan theta function.
3
1, -2, 0, 0, 0, 4, 0, 0, 0, -10, 0, 0, 0, 20, 0, 0, 0, -36, 0, 0, 0, 64, 0, 0, 0, -110, 0, 0, 0, 180, 0, 0, 0, -288, 0, 0, 0, 452, 0, 0, 0, -692, 0, 0, 0, 1044, 0, 0, 0, -1554, 0, 0, 0, 2276, 0, 0, 0, -3296, 0, 0, 0, 4724, 0, 0, 0, -6696, 0, 0, 0, 9408, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^16)^2 / (eta(q^2) * eta(q^8)^5) in powers of q.
Euler transform of period 16 sequence [ -2, -1, -2, -3, -2, -1, -2, 2, -2, -1, -2, -3, -2, -1, -2, 0, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^k^2) / (Sum_{k in Z} x^(4 * k^2)).
a(4*n) = 0 unless n=0. a(4*n + 2) = a(4*n + 3) = 0. a(4*n + 1) = -2 * A079006(n).
a(n) = (-1)^n * A208274(n). Convolution inverse of A208933. - Michael Somos, Dec 11 2016
G.f.: Product_{k>0} (1 + x^(8*k)) / ((1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k))^3). - Michael Somos, Dec 11 2016
EXAMPLE
G.f. = 1 - 2*q + 4*q^5 - 10*q^9 + 20*q^13 - 36*q^17 + 64*q^21 - 110*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] / EllipticTheta[ 3, 0, q^4], {q, 0, n}]; (* Michael Somos, Dec 11 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)^2 / (eta(x^2 + A) * eta(x^8 + A)^5), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 29 2012
STATUS
approved