

A236799


Decimal expansion of 1/9998.


1



0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 1, 6, 0, 0, 3, 2, 0, 0, 6, 4, 0, 1, 2, 8, 0, 2, 5, 6, 0, 5, 1, 2, 1, 0, 2, 4, 2, 0, 4, 8, 4, 0, 9, 6, 8, 1, 9, 3, 6, 3, 8, 7, 2, 7, 7, 4, 5, 5, 4, 9, 1, 0, 9, 8, 2, 1, 9, 6, 4, 3, 9, 2, 8, 7, 8, 5, 7, 5, 7, 1, 5, 1, 4, 3, 0, 2, 8, 6, 0, 5, 7, 2, 1, 1, 4, 4, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,8


COMMENTS

Generalization [Comments by Daniel Forgues copied and adapted from A022002]:
1/8 = sum (2^i/10^(i+1)), i >= 0,
1/98 = sum (2^i/100^(i+1)), i >= 0, (A021102)
1/998 = sum (2^i/1000^(i+1)), i >= 0, (A022002)
1/9998 = sum (2^i/10000^(i+1)), i >= 0, (this sequence)...  Daniel Forgues, Oct 28 2011
A "curiosity": the first 13 groups of digits in groups of 4 give the successive powers of 2:
0, 0, 0, 1,
0, 0, 0, 2,
0, 0, 0, 4,
0, 0, 0, 8,
0, 0, 1, 6,
0, 0, 3, 2,
0, 0, 6, 4,
0, 1, 2, 8,
0, 2, 5, 6,
0, 5, 1, 2,
1, 0, 2, 4,
2, 0, 4, 8,
4, 0, 9, 6, < the last explicit power of 2
8, 1, 9, 3,
6, 3, 8, 7,
etc.


LINKS



EXAMPLE

0.0001000200040008001600320064012802560512102420484096819363872774554910982...


MATHEMATICA

Join[{0, 0, 0}, RealDigits[1/9998, 10, 102] // First]


PROG



CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



