%I #18 Feb 26 2014 13:55:46
%S 0,0,0,1,0,0,0,2,0,0,0,4,0,0,0,8,0,0,1,6,0,0,3,2,0,0,6,4,0,1,2,8,0,2,
%T 5,6,0,5,1,2,1,0,2,4,2,0,4,8,4,0,9,6,8,1,9,3,6,3,8,7,2,7,7,4,5,5,4,9,
%U 1,0,9,8,2,1,9,6,4,3,9,2,8,7,8,5,7,5,7,1,5,1,4,3,0,2,8,6,0,5,7,2,1,1,4,4,2
%N Decimal expansion of 1/9998.
%C Generalization [Comments by Daniel Forgues copied and adapted from A022002]:
%C 1/8 = sum (2^i/10^(i+1)), i >= 0,
%C 1/98 = sum (2^i/100^(i+1)), i >= 0, (A021102)
%C 1/998 = sum (2^i/1000^(i+1)), i >= 0, (A022002)
%C 1/9998 = sum (2^i/10000^(i+1)), i >= 0, (this sequence)... - Daniel Forgues, Oct 28 2011
%C A "curiosity": the first 13 groups of digits in groups of 4 give the successive powers of 2:
%C 0, 0, 0, 1,
%C 0, 0, 0, 2,
%C 0, 0, 0, 4,
%C 0, 0, 0, 8,
%C 0, 0, 1, 6,
%C 0, 0, 3, 2,
%C 0, 0, 6, 4,
%C 0, 1, 2, 8,
%C 0, 2, 5, 6,
%C 0, 5, 1, 2,
%C 1, 0, 2, 4,
%C 2, 0, 4, 8,
%C 4, 0, 9, 6, <-- the last explicit power of 2
%C 8, 1, 9, 3,
%C 6, 3, 8, 7,
%C etc.
%H Jean-François Alcover, <a href="/A236799/b236799.txt">Table of n, a(n) for n = 0..359</a>
%e 0.0001000200040008001600320064012802560512102420484096819363872774554910982...
%t Join[{0, 0, 0}, RealDigits[1/9998, 10, 102] // First]
%o (PARI) 1/9998. \\ _Charles R Greathouse IV_, Feb 26 2014
%Y Cf. A021102, A022002.
%K nonn,cons,easy
%O 0,8
%A _Jean-François Alcover_, Jan 31 2014