login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261988
Expansion of phi(q^9) / phi(q) in powers of q where phi() is a Ramanujan theta function.
2
1, -2, 4, -8, 14, -24, 40, -64, 100, -152, 228, -336, 488, -700, 992, -1392, 1934, -2664, 3640, -4936, 6648, -8896, 11832, -15648, 20584, -26942, 35096, -45512, 58768, -75576, 96816, -123568, 157156, -199200, 251676, -316992, 398072, -498460, 622448, -775216
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^18)^5 / (eta(q^2)^5 * eta(q^9)^2 * eta(q^36)^2) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = ellq(2 Pi i t) and g() is the g.f. for A139380.
a(n) = (-1)^n * A128770(n). Convolution inverse is A139380.
EXAMPLE
G.f. = 1 - 2*q + 4*q^2 - 8*q^3 + 14*q^4 - 24*q^5 + 40*q^6 - 64*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^9] / EllipticTheta[ 3, 0, q], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^18 + A)^5 / (eta(x^2 + A)^5 * eta(x^9 + A)^2 * eta(x^36 + A)^2), n))};
CROSSREFS
Sequence in context: A365666 A090399 A069251 * A128770 A280947 A069252
KEYWORD
sign
AUTHOR
Michael Somos, Sep 07 2015
STATUS
approved