OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^18)^5 / (eta(q^2)^5 * eta(q^9)^2 * eta(q^36)^2) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = ellq(2 Pi i t) and g() is the g.f. for A139380.
EXAMPLE
G.f. = 1 - 2*q + 4*q^2 - 8*q^3 + 14*q^4 - 24*q^5 + 40*q^6 - 64*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^9] / EllipticTheta[ 3, 0, q], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^18 + A)^5 / (eta(x^2 + A)^5 * eta(x^9 + A)^2 * eta(x^36 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 07 2015
STATUS
approved